DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

ie Grandgirard

Exascale needs and bottlenecks for semi-lagrangian gyrokinetic simulations of turbulence in tokamak plasmas I GYSELA code

V. Grandgirard¹

Collaborations with physicists:

- J. Abiteboul², G. Dif-pradalier¹, Y. Dong³, D. Estève¹,
- X. Garbet¹, Ph. Ghendrih¹, J.B Girardo¹, C. Norscini¹,
- F. Palermo¹, Y. Sarazin¹, A. Strugarek⁷, D. Zarzoso²

Collaborations with mathematicians:

- A. Back⁴, T. Cartier-Michaud¹, M. Mehrenberger⁵,
- L. Mendoza², E. Sonnendrücker²

Collaborations with computer scientists:

G. Latu¹, J. Bigot⁶, C. Passeron¹, F. Rozar^{1,6}

¹CEA, IRFM, Cadarache, France

³LPP, Paris, France

² IPP Garching, Germany ⁴ CPT, Marseille, France

⁵ IRMA, Strasbourg, France

⁶Maison de la Simulation, Saclay, France

⁷Montreal university, Canada

ANR GYPSI - ANR G8-Exascale Nufuse ADT-INRIA SELALIB - AEN-INRIA Fusion

29 August 2014

- Scaling law in tokamaks: plasma volume $\times \tau_E \approx$ cte with τ_E = energy confinement time ~ measure of thermal insulation.
- Two main possibilities to increase tokamak performances:

1 increase the size of the machine or/and **2** increase τ_E

Turbulence governs τ_E

- Generates loss of heat and particles
- Confinement properties of the magnetic configuration

Understanding, predicting and controlling turbulence for optimizing experiments like ITER and future reactors is a subject of utmost importance.

O Gyrokinetic theory

e GYSELA code

- Semi-lagrangian approach
- MPI/OpenMP parallelisation
- Global flux driven simulation
- 8 Exascale needs and associated challenges
 - Increase of core number : scalability, fault tolerance
 - Memory reduction and big data
 - Continuous integration

- Charged particle motion governed by electromagnetic fields
- Electromagnetic fields governed by charge ρ and current j densities
 - self-consistent treatment required

Plasma response: The most accurate \Rightarrow Kinetic

Virginie GRANDGIRARD

Fields Maxwell's equations

► Electrostatic (**B** = const): **E** = $-\nabla \phi$ (ϕ electrostatic potential)

• "large scale" (>
$$\lambda_{\text{Debye}} \sim 10^{-4} m$$
)

- Quasi-neutrality equation:

$$\rho(\mathbf{x},t) = \sum_{s} n_{s} q_{s} = 0 \quad \text{with} \quad n_{s} = \int f_{s} d\mathbf{v}$$

- Particles Hinetic approach mandatory
 - > Fusion plasmas weakly collisional \Rightarrow fluid description not appropriate

Boltzmann equation:

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \frac{\partial f_s}{\partial \mathbf{x}} + \frac{\mathbf{d}\mathbf{v}}{\mathbf{d}t} \cdot \frac{\partial f_s}{\partial \mathbf{v}} = C(f_s) + S$$

6D function of s specie $f_s(\mathbf{x}, \mathbf{v})$ (3D in space and 3D in velocity)

Kinetic theory: \Rightarrow 6D distribution function of particles (3D in space and 3D in velocity) $F_s(r, \theta, \varphi, v_{\parallel}, v_{\perp}, \alpha)$

large phase space reduction 6D to 5D

- Fusion plasma turbulence is low frequency: $\omega_{turb} \sim 10^5 s^{-1} \ll \omega_{ci} \sim 10^8 s^{-1}$
- Phase space reduction: fast gyro-motion is averaged out
 - Adiabatic invariant: magnetic moment $\mu = m_s v_{\perp}^2/(2B)$
 - Velocity drifts of guiding centers
- Large reduction memory/CPU time

Gyrokinetic theory:

Complexity of the system

Gyrokinetic theory: \blacksquare 5D distribution function of guiding-centers $\overline{F}_{s}(r, \theta, \varphi, v_{G||}, \mu)$ where μ parameter

Virginie Grandgirard

- Gyrokinetic codes require state-of-the-art HPC techniques and must run efficiently on several thousands processors.
 - non-linear 5D simulations
 - multi-scale problem in space and time
 - time: $\Delta t \approx \gamma^{-1} \sim 10^{-6} s \rightarrow t_{\text{simul}} \approx \text{few } \tau_E \sim 10 s$

▶ space:
$$\rho_i \rightarrow$$
 machine size a

$$\rho_* \equiv \frac{\rho_i}{a} \ll 1$$

✓ $\rho_{* \text{ ITER}} = 1/512$ ✓ Number grid points ~ $(\rho_{*})^{-3}$ **Huge mesh for global simulations** ex: $1024^{3} \times 128v_{\parallel} \times 16\mu$ → several billiard of points

ITER school *

There are about ten 5D gyrokinetic codes for plasma fusion in the world.

- Various simplifications:
 - δf codes: scale separation between equilibrium and perturbation.
 - Flux-tube codes ⇒ the domain considered is a vicinity of a magnetic field line.
 - Fixed gradient boundary conditions.
 - Collisionless.
- Various numerical schemes:
 - Lagrangian (PIC), Eulerian or Semi-Lagrangian
- A new generation of global full-f gyrokinetic codes is being developed with collisions and flux-driven boundary conditions.

GYSELA (GYrokinetic SEmi-LAgrangian code) is one of them

🛊 ITER school 🖈

Global simulations required huge meshes

1 "Flux-tube" approach (local)

- Simulate only a vicinity of magnetic field line
- drastic reduction of mesh size
 - + periodic boundary conditions
- small scale structures only
- ② Global approach
 - Simulate the whole domain

Capture large scale events

Symmetry

φ

Plasma current

R₀

Extremely large 3D meshes
 + boundary conditions

Magnetic

surfaces

Poloidal

ross section

Gysela 5d

Magnetic

field line

Toroidal field

а

Vanishing gradient boundary conditions at inner boundary

 \rightarrow temperature and flows evolve freely

- Source terms aims at maintaining the equilibrium profiles, which would otherwise relax towards marginal state
- Long-time simulations are available
 - \Rightarrow Extremely expensive in terms of CPU time.

Virginie Grandgirard

Gyrokinetic theory

GYSELA code

- Semi-lagrangian approach
- MPI/OpenMP parallelisation
- Global flux driven simulation
- 8 Exascale needs and associated challenges
 - Increase of core number : scalability, fault tolerance
 - Memory reduction and big data
 - Continuous integration

HE LA RECHERCHE À UNIVOUSTRIE

Time evolution of the gyrocenter distribution function for s species $\bar{F}_{s}(r, \theta, \varphi, v_{\parallel}, \mu)$ governed by 5D gyrokinetic Fokker-Planck equation with an additional realistic heating source:

$$B_{\parallel s}^* \frac{\partial \bar{F}_s}{\partial t} + \nabla \cdot \left(\frac{d\mathbf{x}_G}{dt} B_{\parallel s}^* \bar{F}_s\right) + \frac{\partial}{\partial v_{G\parallel}} \left(\frac{dv_{G\parallel}}{dt} B_{\parallel s}^* \bar{F}_s\right) = \underbrace{C(\bar{F}_s)}_{\text{collicion accrete}} + \underbrace{S}_{\text{beating source}}$$

collision operator

where $\frac{d\mathbf{x}_{G}}{dt} = \mathbf{v}_{G} = v_{G\parallel}\mathbf{b} + v_{G\perp}$ with $v_{G\perp} \approx \frac{\mathbf{E} \times \mathbf{B}}{B^2} + v_{d0} R \frac{\mathbf{B} \times \nabla B}{B^2}$

 $\mathbf{E} = \nabla (\mathbf{J}_0 \cdot \phi)$ with $\phi(\mathbf{x})$ electrostatic potential and \mathbf{J}_0 the gyroaverage operator

Self-consistency ensured by a 3D guasi-neutrality equation:

$$\underbrace{\frac{e}{T_{e,eq}}(\phi - \langle \phi \rangle_{FS})}_{\delta n_e \text{ for adiabatic electrons}} = \underbrace{\frac{1}{n_{e_0}} \sum_{s} Z_s \int J_0 \cdot \left(\bar{F}_s - \bar{F}_{s,eq}\right) d^3 v}_{\sum_s \delta n_{GCs}} + \underbrace{\frac{1}{n_{e_0}} \sum_{s} Z_s \nabla_{\perp} \cdot \left(\frac{n_{s,eq}}{B\Omega_s} \nabla_{\perp} \phi\right)}_{\delta n_{polarization} \text{ particles } \neq \text{ guiding-centers}}$$

Solving the 3D quasi-neutrality equation is equivalent to finding $\phi(r, \theta, \varphi)$ such that:

$$\frac{e}{T_{e,eq}}\left(\phi - \langle \phi \rangle_{\rm FS}\right) - \frac{1}{n_{e_0}} \sum_{s} Z_s \nabla_\perp \cdot \left(\frac{n_{s,eq}}{B\Omega_s} \nabla_\perp \phi\right) = \frac{1}{n_{e_0}} \sum_{s} Z_s \int J_0 \cdot \left(\bar{F}_s - \bar{F}_{s,eq}\right) d^3 v$$

Numerical methods:

- Fourier projection in periodic directions θ and φ
- Finite differences in radial direction

Difficulties:

⑦ R.H.S = integral over the velocity space ⇒ Parallel communications ++

 $(\phi)_{FS} = \iint \phi \mathcal{J}_{x} d\theta d\phi / \iint \mathcal{J}_{x} d\theta d\phi$ flux surface average of ϕ

 \Rightarrow Pb in Fourier due to coupling between θ and φ

A time-splitting of Strang is applied to the 5D non-linear Boltzmann equation:

$$B_{\parallel s}^* \frac{\partial \bar{F}_s}{\partial t} + \nabla \cdot \left(\frac{d\mathbf{x}_{\mathbf{G}}}{dt} B_{\parallel s}^* \bar{F}_s\right) + \frac{\partial}{\partial v_{\mathbf{G}\parallel}} \left(\frac{dv_{\mathbf{G}\parallel}}{dt} B_{\parallel s}^* \bar{F}_s\right) = C(\bar{F}_s) + S$$

$$(\tilde{\mathcal{B}}) \equiv \left(\frac{\tilde{\mathcal{S}}}{2}, \frac{\tilde{C}}{2}\right) \left(\frac{\tilde{V_{G||}}}{2}, \frac{\tilde{\varphi}}{2}, \tilde{X_G}, \frac{\tilde{\varphi}}{2}, \frac{\tilde{V_{G||}}}{2}\right) \left(\frac{\tilde{C}}{2}, \frac{\tilde{\mathcal{S}}}{2}\right)$$

Virginie Grandgirard

★ ITER school

A time-splitting of Strang is applied to the 5D non-linear Boltzmann equation:

$$B_{\parallel s}^* \frac{\partial \bar{F}_s}{\partial t} + \nabla \cdot \left(\frac{d\mathbf{x}_{\mathbf{G}}}{dt} B_{\parallel s}^* \bar{F}_s\right) + \frac{\partial}{\partial v_{\mathbf{G}\parallel}} \left(\frac{dv_{\mathbf{G}\parallel}}{dt} B_{\parallel s}^* \bar{F}_s\right) = C(\bar{F}_s) + S$$

Let us define three advection operators
$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \nabla \cdot \left(B_{\parallel s}^{*} \frac{d \chi_{G}}{dt} \bar{F}_{s}\right) = 0 \qquad : (\tilde{\chi}_{G})$$

$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \frac{\partial}{\partial \varphi} \left(B_{\parallel s}^{*} \frac{d \varphi}{dt} \bar{F}_{s}\right) = 0 \qquad : (\tilde{\varphi})$$

$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \frac{\partial}{\partial \varphi} \left(B_{\parallel s}^{*} \frac{d \varphi}{dt} \bar{F}_{s}\right) = 0 \qquad : (\tilde{\varphi})$$

$$B_{\parallel s}^{*} \frac{\partial \bar{F}_{s}}{\partial t} + \frac{\partial}{\partial v_{G\parallel}} \left(B_{\parallel s}^{*} \frac{d v_{G\parallel}}{dt} \bar{F}_{s}\right) = 0 \qquad : (v_{G\parallel})$$
And the collision operator (\tilde{C}) on a $\Delta t : \partial_{s} \bar{F}_{s} = C(\bar{F}_{s})$

- And the collision operator (C) on a Δl : $\partial_t F_s = C(F_s)$
- And the source operator (\tilde{S}) on a Δt : $\partial_t \bar{F}_s = S$

- Crank-Nicolson
- Then, a Boltzmann solving sequence $(\tilde{\mathcal{B}})$ is performed:

$$(\tilde{\mathcal{B}}) \equiv \left(\frac{\tilde{\mathcal{S}}}{2}, \frac{\tilde{C}}{2}\right) \left(\frac{\tilde{\mathcal{V}_{G||}}}{2}, \frac{\tilde{\varphi}}{2}, \tilde{\mathcal{X}_{G}}, \frac{\tilde{\varphi}}{2}, \frac{\tilde{\mathcal{V}_{G||}}}{2}\right) \left(\frac{\tilde{C}}{2}, \frac{\tilde{\mathcal{S}}}{2}\right)$$

Virginie GRANDO

Example of Backward Semi-Lagrangian (BSL) approach for 1D advection operator

We consider the advection equation

$$\frac{\partial f}{\partial t} + \mathbf{a}(x,t) \cdot \nabla_{\mathbf{x}} f = 0 \tag{1}$$

The scheme: (mix between PIC and Eulerian approach)

- Fixed grid on phase-space (Eulerian character)
- Method of characteristics : ODE → origin of characteristics (*PIC character*)
- Distribution function *f* is conserved along the characteristics

i.e.
$$f^{n+1}(\mathbf{x}_i) = f^n(X(t_n; \mathbf{x}_i, t_{n+1}))$$
 (2)

Interpolate on the origin using known values of previous step at mesh points (initial distribution f⁰ known).

- 🙂 Fixed grid in time 🗯 perfect load balancing
- © Complex parallelization due to cubic spline interpolation
 - Loss of locality (value of f on one grid point requires f over the whole grid)
 - Not possible to use a simple domain decomposition

Two approaches are used in the GYSELA code

Work on the decomposed domain: A new numerical tool has been developed

Hermite Spline interpolation on patches [La

[Latu-Crouseilles 2007]

- Local splines on each subdomains with Hermite boundary conditions
- Derivatives defined to match as closely as possible those of global splines

③ Some gradients can appear at the interfaces in the non-linear phase

Work on the global domain:

Data transposition

• Let us consider the transposition operation T_F and its inverse T_F^{-1} : $\xrightarrow{T_F}$

(€ 7_=1

$$\bar{F}_{s}(r_{ ext{block}}, heta_{ ext{block}}, \phi = *, v_{\parallel} = *, \mu = \mu_{ ext{id}})$$

$$\bar{F}_{s}(r = *, \theta = *, \phi_{\text{block}}, v_{\parallel \text{block}}, \mu = \mu_{\text{id}})$$

Each processor has all information on ϕ and \textit{v}_{\parallel} directions so:

- Each processor has all information on (r, θ) cross-section
- \hookrightarrow 1D advection operator ($\tilde{\varphi}$) is possible
- \hookrightarrow as 1D advection operator $(\tilde{v_{G\parallel}})$

 \hookrightarrow 2D advection operator \tilde{X}_G

Expensive in term of communication between processors

🛊 ITER school 🔺

Gyrokinetic theory

GYSELA code

- Semi-lagrangian approach
- MPI/OpenMP parallelisation
- Global flux driven simulation
- 8 Exascale needs and associated challenges
 - Increase of core number : scalability, fault tolerance
 - Memory reduction and big data
 - Continuous integration

GYSELA main characteristics:

- Complete knowledge at the institute.
- ▶ Written in Fortran90 + some routines in C (~ 50000 lines).
- Hybrid OpenMP/MPI parallelisation to use benefit of SMP cluster

For instance:

- MPI between nodes
- OpenMP inside quad-core CPU

Message Passing Interface (MPI)

- MPI is a library specification for message-passing, proposed as a standard by a broadly community.
- Open Multi Processing (OpenMP)
 - OpenMP is a specification for a set of compiler directives, library routines, and environment variables that can be used to specify shared memory parallelism in Fortran and C/C++ programs.

Virginie GRANDGIRARD

★ ITER school ★

SMP cluster scheme

Global algorithm

- Let us consider the transposition operation T_F and its inverse T_F^{-1} :
- $\bar{F}_{s}(r_{\text{block}},\theta_{\text{block}},\phi=*,\mathbf{v}_{\parallel}=*,\mu=\mu_{\text{id}}) \stackrel{\frac{T_{F}}{\Longrightarrow}}{\underset{T_{F}^{-1}}{\xleftarrow{}}} \bar{F}_{s}(r=*,\theta=*,\phi_{\text{block}},\mathbf{v}_{\parallel\text{block}},\mu=\mu_{\text{id}})$

Input: Physics parameters + $\vec{F}_{s}^{0}(r_{\text{block}}, \theta_{\text{block}}, \phi = *, v_{\parallel} = *, \mu = \mu_{\text{id}})$ For k = 0 to N:

- Computation of r.h.s of quasi-neutrality: $\sum_s Z_s \int J_0 \cdot \bar{F}_s^k dv_{\parallel} d\mu$
- ▶ Solve 3D QN equation: $\phi^k \rightarrow \phi^{k+1}$
- ► For each species s and each value of µ = µ_{id}:
 - Gyroaverage computation: $J_0 \cdot \phi^{k+1}$
 - ▶ Solve 5D Boltzmann equation: $\bar{F}_s^k \rightarrow \bar{F}_s^{k+1}$

$$\left[\left(\frac{\tilde{S}}{2}, \frac{\tilde{C}}{2}\right)\left(\frac{\tilde{V_{G||}}}{2}, \frac{\tilde{\varphi}}{2}\right)\right], \ T_{F}\left(\tilde{X_{G}}\right) \ T_{F}^{-1}, \left[\left(\frac{\tilde{\varphi}}{2}, \frac{\tilde{V_{G||}}}{2}\right)\left(\frac{\tilde{C}}{2}, \frac{\tilde{S}}{2}\right)\right]$$

End for

Phase space reduction for 3D to 0D diagnostics at time t^{k+1}

End for

• Output: Distribution function (\bar{F}_s^N) for restart + 0D to 3D diag. at several times

Speed up = $T_{\text{serial}}/T_{\text{parallel}}(n)$

- T_{serial} = 100 sec
- T_{parallel}(2) = 80 secs
- 25% speed up
- Efficiency = $T_{\text{serial}}/(n \times T_{\text{parallel}}(n))$
 - ► 100/(2×80) =
 - 62% efficiency
- Weak scaling The problem size (workload) assigned to each processing element stays constant and additional elements are used to solve a larger total problem
- Strong scaling The problem size stays fixed but the number of processing elements are increased
- In general, it is harder to achieve good strong-scaling at larger process counts since the communication overhead for many/most algorithms increases in proportion to the number of processes used.

DE LA RECHERCHE À L'INDUSTRI

Strong scaling: $N_r = 512$, $N_{\theta} = 512$, $N_{\varphi} = 128$, $N_{v||} = 128$

- Time dominated by Vlasov solver
- Scaling bottleneck: Poisson solver

DE LA RECHERCHE À L'INDUSTRI

Strong scaling: $N_r = 512$, $N_{\theta} = 512$, $N_{\varphi} = 128$, $N_{v\parallel} = 128$

- Time dominated by Vlasov solver
- Scaling bottleneck: Poisson solver

 $\approx 60\%$ efficiency at 64 k cores on both machines (Curie and Turing)

Virginie GRANDGIRARD

🖈 ITER school 🔺

Gyrokinetic theory

GYSELA code

- Semi-lagrangian approach
- MPI/OpenMP parallelisation
- Global flux driven simulation
- 8 Exascale needs and associated challenges
 - Increase of core number : scalability, fault tolerance
 - Memory reduction and big data
 - Continuous integration

Grand Challenge CINES 2010: Biggest global simulation ever run

A simulation close to ITER-size scenario ($\rho_* = 1/512$) performed on 1/4 torus with additional heating power of **60 MW during 1 ms**

ion temperature fluctuations in the turbulent saturated phase

✓ A 5D mesh of 272 10⁹ points

 $(r, \theta, \varphi, v_{\parallel}, \mu) = (1024 \times 1024 \times 128 \times 128 \times 16)$

- ✓ > 6.1 million hours monoproc.
 - ~ 31 days on 8192 processors

ŧ

- 6.5 TBytes of data to analyse
 - 1.5 TBytes for 2D and 3D savings
 - 5 TBytes for restart files

[J. Abiteboul EPS2010, Y. Sarazin IAEA2010]

Virginie Grandgirard

r ITER school 🖈

- Generation & transport of toroidal rotation / Role of turbulence & boundary conditions
 - ▶ [J. Abiteboul et al., PPCF 2013]
- Transport barrier relaxations with E_r shear
 - ▶ [A. Strugarek et al., PPCF 2013]
 - ▶ [A. Strugarek et al., PRL 2013]
 - F [Y. Sarazin, V. Grandgirard and A. Strugarek,

La Recherche, nov. 2012]

- Interaction energetic particles & turbulence via EGAMs
 - ▶ [D. Zarzoso et al., PoP 2012, PRL 2013]
- Comparison with experiments
 - ▶ [invited G. Dif-Pradalier , TTF 2013]
- Caracterisation of turbulent transport
 - ▶ [C. Norscini, poster, Vlasovia 2013]
 - ▶ [T. Cartier-Michaud, poster, Vlasovia 2013]

Snapshots of non-axisymmetric electric potential fluctuations

 Generation & transport of toroidal rotation / Role of turbulence & boundary conditions

 \bigcirc N = 9 instead N = 18 for ripple effects

- Interaction energetic particles & turbulence via EGAMs
 - Ont possible to treat very energetic particles
- Comparison with experiments
 - Several energy confinement times not accessible
- Caracterisation of turbulent transport
 - Ontering the second statistics
 Output
 Description:

Virginie Grandgirard

Snapshots of non-axisymmetric electric potential fluctuations

GYSELA is already using currently Petascale machine (> 50 million hours/year)

Compromise machine size & simul. up to energy confinement time must be found

- GYSELA simulation close to ITER-like parameters : 272 billions of points
- Longest time simulation: $2.10^6/\Omega_c \sim 1$ energy confinement time

	Number of Points (ρ*=ρ/a)	Time / Ω_{c}	Number of cores	Number of days of simulation
Gd Challenge CINES 2010	272 billions (ρ*=1/512)	147 840	8192	31
Gd Challenge	33 billions (ρ*=1/150)	678 510	16 384	15
CURIE 2012	=> Adding of tritium		32768	6
Comparison with experiment (in progress)	87 billions (ρ*=1/300)	2 000 000	5520	46

GYSELA will require Exascale machine for realistic kinetic electrons

With electrons: $\rho_{\text{ions}}/\rho_{\text{elec}} = 60 \implies \text{mesh size} \times 60^3$ and time step/60 !!!

Virginie Grandgirard

- Gyrokinetic theory
- e GYSELA code
 - Semi-lagrangian approach
 - MPI/OpenMP parallelisation
 - Global flux driven simulation
- 8 Exascale needs and associated challenges
 - ► Increase of core number : scalability, fault tolerance
 - Memory reduction and big data
 - Continuous integration

At the moment, Petascale machines (in operation since 2008):
 → more than 33 PetaFlops (1 PFlops= 10¹⁵ floating point operations per second)

Ę	OP50)© ® 14		PRESENTED BY	ery PROVE NEUR TECHNO	TEUS	FI	ND OUT M /ww.top5
	NAME	SPECS			SITE	COUNTRY	CORES	RMAX PFLOP/S
1	Tianhe-2 (Milkyway-2)	NUDT, Intel Ivy Bridge (12C,	2.2 GHz) & Xeon Phi (57C, 1.	1 GHz), Custom interconnect	NSCC Guangzhou	China	3,120,000	33.9
2	Titan	Cray XK7, Operon 6274 (16C	2.2 GHz) + Nvidia Kepler GP	U, Custom interconnect	DOE/SC/ORNL	USA	560,640	17.6
3	Sequoia	IBM BlueGene/Q, Power B	1C (16C 1.60 GHz), Custom in	terconnect	DOE/NNSA/LLNL	USA	1,572,864	17.2
4	K computer	Fujitsu SPARC64 VIIIfx (8C, 3	2.0GHz), Custom interconnec	:t	RIKEN AICS	Japan	705,024	10.5
5	Mira	IBM BlueGene/Q, Power B	2C (16C, 1.60 GHz), Custom in	terconnect	DOE/SC/ANL	USA	786,432	8.59

Nobody knows what will exactly be the future "Exascale machine" but:

- \hookrightarrow Several millions of cores with small memory per core (< 1 GBytes)

Virginie GRANDGIRARD

★ ITER school ★

- Applications will need to be scalable on millions of cores
- Exascale machines could be close to BlueGene Architecture or ... ?
 → Adapting the code for BlueGene architecture

[J. Bigot, F. Rozar et al., ESAIM proceedings 2013]

- \hookrightarrow Adapting the code to the new Intel-Xeon Phi technology
 - Tests on IFERC machine with a prototype application

[G. Latu, M. Haefele, CEMRACS 2014 project]

- Increase of number of cores ⇒ Probability of crashes increases
 - Post-Doc ANR-Nufuse G8@Exascale: O. Thomine (oct 2011-oct 2013)
 - ← Non-blocking writing of restart files [O. Thomine et al., ESAIM proceedings 2013]
 - ← Fault tolerance improvement [J. Bigot, CEMRACS 2014 project]
 - Coupling with FTI library (developed by F. Capello)

Big data ~ Several hundreds TBytes: Issues of transfer, storage, visualisation
 ↔ HLST support (IPP Garching) for data compression and parallel writting

[S. Espinoza, HLST report 2013]

- \hookrightarrow How to improve data transfer ? \clubsuit Actually more than one week
- \hookrightarrow Where and how to archive ?
- \hookrightarrow CINES team (long time storage)
- \hookrightarrow Visualisation with SDvision (IRFU/DSM)
- Memory reduction per nodes:
 - PhD Maison De la Simulation / IRFM: F. Rozar (dec 2012-dec 2015)
 - ← Development of dedicated tools for memory scalability. (MTM C/Fortran library)
 - \hookrightarrow First gain up to 50% of memory on a large simulation run.

[F. Rozar et al., submitted to PPAM2013]

- Big efforts of parallelisation since 2009
- Maximum of Gd Challenge opportunities taken to improve GYSELA efficiency

	Relative efficiency		Number of			
	Weak scaling	Strong scaling	cores	x56		
Gd Challenge CINES (march 2010)	92 %	82 %	8192			
Gd Challenge CURIE (march 2012)	91 %	61 %	65 536			
Porting on Blue Gene Architecture => Communication schemes rewritten						
Gd Challenge TURING (january 2013)	92 %	61 %	65 536			
Access to totality of JUQUEEN (may 2013)	91 %		458 752	Ļ		

 \hookrightarrow Weak scaling: Relative efficiency of 91% on 458752 cores on the totality of the biggest european machine (Juqueen - 1.8 Mthreads)

Virginie Grandgirard

- Parallel communication schemes completely rewritten
- Tests performed on the totality of JUQUEEN/Blue Gene machine (Juelich)

Execution time, one Gysela (Weak Scaling - Juqueen)

Relative efficiency, one run (Weak scaling - Juqueen)

- Weak scaling: Relative efficiency of 91% on 458752 cores.
 - PRACE preparatory access (April 2012 Nov 2012): 250 000 hours
 - ANR G8-Exascale via P. Gibbon.

Virginie Grandgirard

ITER school *

- GYSELA is global I Huge meshes Constrained by memory per node
- Development of the MTM library in progress (Modelization & Tracing Memory consumption)
 - Identification of memory peak
 - Prediction of memory required before submit Avoid memory exhaust

- Static to dynamic memory alloc. + improvement of algorithms
 - ➡ Gain of factor 50% on 32k cores

[F. Rozar et al., accepted to PPAM2013]

Lossy Compression for Huge 3D Data (LCHD)

- Problem of memory and time scalability for GYSELA 3D diagnostics
- Development of the LCHD library performed by HLST-IPP Garching
 - 6 months project S. Espinoza & M. Haefele
- [S. Espinoza, HLST Report 2013]

- Fast multi-file multi-variable exportation
- Lossless and lossy 3D data compression

- I/O bandwidth ×26 with parallel efficiency of 95% from 256 to 1280 cores
- Lossless: 8% compression;
- Lossy: from 50% to 70% achieved without altering physics

Virginie Grandgirard

- Based on the Inria continuous integration platform
 - Jenkins + CloudStack
- Each time compilation in many modes (43) Series Error + warning analysis
- Non-regressing physical tests

Virginie GRANDGIRARD

★ ITER school ★

 Each GYSELA simulation = a numerical experiments
 → Several weeks on several thousands of core (ex: Grand Challenge Curie 2012: 15 days on 16384 cores)
 → Several TBytes of data to store and to analyse

 Exascale HPC are required for realistic kinetic simulations with both ions and electrons

← Promising results: Weak scaling - relative efficiency of 91% on 458752 cores

- Lots of bottlenecks need to be overcome for all gyrokinetic codes to be ready to run on exascale machines.
- High level collaboration with computer scientists is mandatory.

Collaborations:

- ADT INRIA Selalib (2011-2015) → Strasbourg, Bordeaux
- Action C2S@Exa IPL INRIA (march 2013-2017)
 - \hookrightarrow Nice, Bordeaux
- New project following AEN INRIA Fusion (evaluation in progress) → Strasbourg, Lyon, Nice
- Collaborations with IPP Garching (Germany) since 2012
- Collaborations with "Maison de la Simulation"- Saclay (Paris) since 2012

DSM IRFM SCCP/GTTM

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

